o
‘ : en l rrl‘ : Centrric Innovations Pvt. Ltd
u CIN.: U72900KL202T1PTC068397

Device Management -

Case Study

Remote Device Management for Apps/Platforms

www.centrric.com support@centrric.com

https://www.centrric.com
mailto:support@centrric.com

Centrric.

The Scenario

1. The mobile app can run multiple user accounts (I can switch between
multiple accounts)

2. Each user account could be an admin of the business profile (A high
privileged profile just like Facebook Pages)

3. Multiple admins for a single business profile
4. Multiple devices for all the users
5. Notification needs to be sent to each device for each profile

6. Business profile notification also needs to be sent to the business profile
admins

Requirement

1. Need to save device information corresponding to each user account

2. A device could have multiple user accounts in the app. That flow also
needs to be covered.

3. Efficient function to send notifications (Personal profiles and business
profiles also multiple devices)

4. Manage access and refresh tokens corresponding to each user account
and device

Solutions

For the multiple problems we faced, we figured out the solution by
introducing a full-fledge Device Management Module

Saving Devices (Backend)

Devitee Theeod

ugesr _aecoudt

device

acteas _Joken ﬁ/

Devite

sefheds _token
1D
Name
Dev-u,mM_ 17}
P
Acuas_Timeslarop
Acess_er'ly
NotRadton _Token

Devices - Models

Centrric.

Centrric.

Each device should generate a unique ID, which can be done using various
packages on React/Flutter/any front end framework.

This unique id is passed along with all other device information to the
backend.

The above table shows that a single user account could hold any number of
devices just by creating another DeviceParent object.
The access token, refresh token and fcm token generated are also saved.

Device Registration (Backend perspective)

Device registration function should recieve the following arguements

1. Device Unique ID

2. Device Name

3. IP (Received from the HTTP request)

4. City, Country (Optional)

5. FCM Token / Any push notification service token

6. Access token & Refresh token

If the device unique ID already exists in the devices DB, then update the
data, else create a new device in the DB with the received data

Centrric.

If the device object ID in the backend is also stored in the front end, then the
checking for device-existing-or-not will be less complex. We have implemented
it, but its completely depending on the scenario. It should work without the
object ID as well. (Note that the device object id and device unique ID are not
same. Object ID is the DB level ID)

{§ D s vedteved \d—,u\v. \D ad devte uriue D makthes,
if oo
ul{:cldrﬂr
Lo Mame of goone
Lo Loaeion ol long

elee Ly, k)
L3 pohffaschen 4oken
Chak donte \D g e
unmbue R"ﬁ cahle elee coeake
\‘c au,
u
o,
teeoke

My rough note while thinking the architecture. This explains the same that | have written above.

Device Registration (Frontend perspective)

Now the architecture is ready. We need to save/register the device to the
backend.

For our case, the access token is generated each time the app opens.
So for us, there were 3 cases

Centrric.

1. Signup
2. Generating access token using username and password

3. Refreshing the access tokens

We enabled device registration for all these cases.

The device info along with generated access token, refresh token, fcm token
and device unique id are used to register the device to the backend.

Now it's ensured that, the device will be registered in all cases.

Token validation decorator

We built a decorator for all the APIs to validate if the access token received
in the header of the HTTP request.

If the access token is available in the devices module connected with the
user account, then the token is marked as valid, as the sequence goes to the
rest of the functions of the APIL.

If the access token is invalid, a 401 the API will respond with a 401 response

@rs- 4oken ..Va].tb!
Decovolerr

(Cheke 1® tkan ve vadnl)

o auess Yken iy uger.dewnees.allt)

};} Conhrue woih AP1 fanchione
e\se.
L——) Resporse [4-0]

Another planning time note. This explains the above textual explanation.

Logout remotely from a device

Created an API to remotely logout the user account from a device.

The function receives only the device unique ID.

The function nullifies the access and refresh token in the device module for
the user account. The token validator decorator on all apis will validate and
respond 401 for all the requests from the device immediately.

And if the device is active currently, we send a silent push notification to the
app not logout the user account which will in turn log out the user account
on the device immediately.

Centrric.

Device]D/ Dewee uﬂ\““& D

!’

Remxte _.a.d Fanctton

%

Push Nohfiadion o
e lmal ouk depe

Foost e Linehon
wimehs base-u- thoe

cumrent Sedevsn of the

usesr

Conclusion

an\ma e Awets oand

Relfoed, “oken foo ¥
dewte

acters _Yoken= nuLL

efdy _token= wury

For -aa
W dente & achne
mﬁ"wﬁj

The above architecture totally works for our scenario. This may be different

depending on the conditions and the business requirements of the app that

you are working on.

Also, there is room for improvisation in this architecture. If you have any

idea to improve my flow, please comment and let’s all contribute to each

other.

Centrric.

